143 research outputs found

    Efficient Visual Odometry and Mapping for Unmanned Aerial Vehicle Using ARM-based Stereo Vision Pre-Processing System

    Full text link
    Visual odometry and mapping methods can provide accurate navigation and comprehensive environment (obstacle) information for autonomous flights of Unmanned Aerial Vehicle (UAV) in GPS-denied cluttered environments. This work presents a new light small-scale low-cost ARM-based stereo vision pre-processing system, which not only is used as onboard sensor to continuously estimate 6-DOF UAV pose, but also as onboard assistant computer to pre-process visual information, thereby saving more computational capability for the onboard host computer of the UAV to conduct other tasks. The visual odometry is done by one plugin specifically developed for this new system with a fixed baseline (12cm). In addition, the preprocessed infromation from this new system are sent via a Gigabit Ethernet cable to the onboard host computer of UAV for real-time environment reconstruction and obstacle detection with a octree-based 3D occupancy grid mapping approach, i.e. OctoMap. The visual algorithm is evaluated with the stereo video datasets from EuRoC Challenge III in terms of efficiency, accuracy and robustness. Finally, the new system is mounted and tested on a real quadrotor UAV to carry out the visual odometry and mapping task

    Predictive Visual Tracking: A New Benchmark and Baseline Approach

    Full text link
    As a crucial robotic perception capability, visual tracking has been intensively studied recently. In the real-world scenarios, the onboard processing time of the image streams inevitably leads to a discrepancy between the tracking results and the real-world states. However, existing visual tracking benchmarks commonly run the trackers offline and ignore such latency in the evaluation. In this work, we aim to deal with a more realistic problem of latency-aware tracking. The state-of-the-art trackers are evaluated in the aerial scenarios with new metrics jointly assessing the tracking accuracy and efficiency. Moreover, a new predictive visual tracking baseline is developed to compensate for the latency stemming from the onboard computation. Our latency-aware benchmark can provide a more realistic evaluation of the trackers for the robotic applications. Besides, exhaustive experiments have proven the effectiveness of the proposed predictive visual tracking baseline approach.Comment: 7 pages, 5 figure

    Correlation Filters for Unmanned Aerial Vehicle-Based Aerial Tracking: A Review and Experimental Evaluation

    Full text link
    Aerial tracking, which has exhibited its omnipresent dedication and splendid performance, is one of the most active applications in the remote sensing field. Especially, unmanned aerial vehicle (UAV)-based remote sensing system, equipped with a visual tracking approach, has been widely used in aviation, navigation, agriculture,transportation, and public security, etc. As is mentioned above, the UAV-based aerial tracking platform has been gradually developed from research to practical application stage, reaching one of the main aerial remote sensing technologies in the future. However, due to the real-world onerous situations, e.g., harsh external challenges, the vibration of the UAV mechanical structure (especially under strong wind conditions), the maneuvering flight in complex environment, and the limited computation resources onboard, accuracy, robustness, and high efficiency are all crucial for the onboard tracking methods. Recently, the discriminative correlation filter (DCF)-based trackers have stood out for their high computational efficiency and appealing robustness on a single CPU, and have flourished in the UAV visual tracking community. In this work, the basic framework of the DCF-based trackers is firstly generalized, based on which, 23 state-of-the-art DCF-based trackers are orderly summarized according to their innovations for solving various issues. Besides, exhaustive and quantitative experiments have been extended on various prevailing UAV tracking benchmarks, i.e., UAV123, UAV123@10fps, UAV20L, UAVDT, DTB70, and VisDrone2019-SOT, which contain 371,903 frames in total. The experiments show the performance, verify the feasibility, and demonstrate the current challenges of DCF-based trackers onboard UAV tracking.Comment: 28 pages, 10 figures, submitted to GRS
    • …
    corecore